Abstract

Establishing a reasonable energy management strategy (EMS) is the key to improve the service durability, power performance and fuel economy of the fuel cell hybrid electric vehicle (FCHEV). This paper obtains energy distribution optimal solution for the fuel cell hybrid bus (FCHB) based on Pontryagin's minimum principle (PMP) algorithm, and the problems of inaccurate estimation of motor power and difficult real-time application are solved. Firstly, the driving feature recognition is completed by collecting the motor output power directly when the FCHB stops at the station. On the basis of it, the sub-optimal co-state value is chosen. Secondly, the sub-optimal co-state is used to complete the real-time application of PMP algorithm in the driving segment. The results are acquired through the simulation and the actual comparison experiment, compared with rule-based simulation and rule-based actual experiment, the hydrogen consumption of the proposed strategy decreases by 20.3% and 28.9% on average. Moreover, the online computation time per step of the proposed strategy is 3.64 ms averagely, less than sampling time interval 1s. It is shown that the proposed method has lower hydrogen consumption rate and excellent real-time performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call