Abstract

In this paper, an obstacle avoidance and target tracking method for both indoor and outdoor mobile robots in dynamic environment is presented, and it aims to enhance autonomous navigation capability of such robots. In the proposed method, image processing and machine-learning approaches are considered. Since obstacles have differences in color and texture and in order to identify non-navigable areas, a monocular onboard camera is used to capture the road lanes by dealing with an image processing technique. The position of the robot with respect to road lane center during navigation is calculated on the basis of a proposed fuzzy logic rules set. In order to provide fast and robust computation, the Haar cascade classifier-based machine-learning technique has been exploited to detect the different sizes and shapes of the obstacles faced by the robot during its movement from source to destination. The dynamic model of a four-wheel mobile robot is initially developed using bond graph theory and then, the proposed obstacle-avoidance strategy is applied. The effectiveness and performance of the proposed method are tested under various simulation and experimentation scenarios. The behavior of the mobile robot for detecting and avoiding static obstacle for single and double road lane change environment is analyzed and discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.