Abstract

A feedback method for obtaining real-time information on the mechanical disruption of tissue through ultrasound cavitation is presented. This method is based on a substantial reduction in ultrasound imaging backscatter from the target volume as the tissue structure is broken down. Ex-vivo samples of porcine liver were exposed to successive high-intensity ultrasound pulses at a low duty cycle to induce mechanical disruption of tissue parenchyma through cavitation (referred to as histotripsy). At the conclusion of treatment, B-scan imaging backscatter was observed to have decreased by 22.4 +/- 2.3 dB in the target location. Treated samples of tissue were found to contain disrupted tissue corresponding to the imaged hypoechoic volume with no remaining discernable structure and a sharp boundary. The observed, substantial backscatter reduction may be an effective feedback mechanism for assessing treatment efficacy in ultrasound surgery using pulsed ultrasound to create cavitation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.