Abstract

Proton computed tomography (pCT) is a novel medical imaging modality for mapping the distribution of proton relative stopping power (RSP) in medical objects of interest. Compared to conventional X-ray computed tomography, where range uncertainty margins are around 3.5%, pCT has the potential to provide more accurate measurements to within 1%. This improved efficiency will be beneficial to proton-therapy planning and pre-treatment verification. A prototype pCT imaging device has recently been developed capable of rapidly acquiring low-dose proton radiographs of head-sized objects. We have also developed an advanced, fast image reconstruction software based on distributed computing that utilizes parallel processors and graphical processing units. The combination of fast data acquisition and fast image reconstruction will enable the availability of RSP images within minutes for use in clinical settings. The performance of our image reconstruction software has been evaluated using data collected by the prototype pCT scanner from several phantoms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.