Abstract
Rice is one of the most consumed foods in Nigeria, therefore it’s production should be on the high as to meet the demand for it. Unfortunately, the quantity of rice produced is being affected by pests such as birds on fields and sometimes in storage. Due to the activities of birds, an effective repellent system is required on rice fields. The proposed effective repellent system is made up of hardware components which are the raspberry pi for image processing, the servo motors for rotation of camera for better field of view controlled by Arduino connected to the raspberry pi, a speaker for generating predator sounds to scare birds away and software component consisting of python and Open Cv library for bird feature identification. The model was trained separately using haar features, HOG (Histogram of Oriented Gradients) and LBP (Local Binary Patterns).Haar features resulted in the highest accuracy of 76% while HOG and LBP were, 27% and 72% respectively. Haar trained model was tested with two recorded real time videos with birds, the false positives were fairly low, about 41%. This haar feature trained model can distinguish between birds and other moving objects unlike a motion detection system which detects all moving objects. This proposed system can be improved to have a higher accuracy with a larger data set of positive and negative images. Keywords—Electronic pest repeller Haar cascade classifier, ultrasonic
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.