Abstract

Extracting and analyzing relevant information from bio-signal recordings are complex tasks in which action potential detection and sorting processes take place, moreover if these are performed in real time. In this regard, the present paper introduces real-time FPGA-based architectures for detection and sorting of bio-signals, in particular macaque and human pancreatic signals. Action potential detection is performed by using an adaptive threshold. Also, during this process we have identified six different action potential shapes from the signals, which have been used to classify the action potentials. Our implementation runs at a frequency of 100 MHz with a low resource consumption for both architectures, and action potentials can be also observed in real time during a simulation in an OLED display.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call