Abstract

Since smelting process of electro-fused magnesia furnace is a complicated process which has characteristics like complex operation conditions, strong nonlinearities, and strong couplings, traditional linear controller cannot control it very well. Advanced intelligent control strategy is a good solution to this kind of industrial process. However, advanced intelligent control strategy always involves huge programming task and hard debugging and maintaining problems. In this paper, a real-time embedded control system is proposed for the process control of electro-fused magnesia furnace based on intelligent control strategy and model-based design technology. As for hardware, an embedded controller based on an industrial Single Board Computer (SBC) is developed to meet industrial field environment demands. As for software, a Linux based on Real-Time Application Interface (RTAI) is used as the real-time kernel of the controller to improve its real-time performance. The embedded software platform is also modified to support generating embedded code automatically from Simulink/Stateflow models. Based on the proposed embedded control system, the intelligent embedded control software of electro-fused magnesium furnace can be directly generated from Simulink/Stateflow models. To validate the effectiveness of the proposed embedded control system, hardware-in-the-loop (HIL) and industrial field experiments are both implemented. Experiments results show that the embedded control system works very well in both laboratory and industry environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.