Abstract

This paper presents an effective vehicle and motorcycle detection system in the blind spot area in the daytime and nighttime scenes. The proposed method identifies vehicle and motorcycle by detecting the shadow and the edge features in the daytime, and the vehicle and motorcycle could be detected through locating the headlights at nighttime. First, shadow segmentation is performed to briefly locate the position of the vehicle. Then, the vertical and horizontal edges are utilized to verify the existence of the vehicle. After that, tracking procedure is operated to track the same vehicle in the consecutive frames. Finally, the driving behavior is judged by the trajectory. Second, the lamps in the nighttime are extracted based on automatic histogram thresholding, and are verified by spatial and temporal features to against the reflection of the pavement. The proposed real-time vision-based Blind Spot Safety-Assistance System has implemented and evaluated on a TI DM6437 platform to perform the vehicle detection on real highway, expressways, and urban roadways, and works well on sunny, cloudy, and rainy conditions in daytime and night time. Experimental results demonstrate that the proposed vehicle detection approach is effective and feasible in various environments.

Highlights

  • In recent years, the driving safety has become the most important issue in Taiwan

  • If region of the interest (ROI) is drawn in red color, the status represents that the system detected and tracked a vehicle which is relative approaching or relative static in ROI

  • The proposed approach presents a real-time embedded blind spot safety assistance system to detect the vehicle or motorcycle appearing in the blind spot area

Read more

Summary

Introduction

The driving safety has become the most important issue in Taiwan. Numbers of car accidents and casualties increase year by year. Collision-forewarning technologies get great attention increasingly, and several kinds of driving safety assisted products are promoted, including lane departure warning systems (LDWSs), blind spot information systems (BLISs), and so forth. These products could provide more information about the vehicle surroundings with the driver, so that the driver could make the correct decision when driving on the road. BLIS could monitor whether the vehicles appear in the side of host car or not and inform the driver when the driver intends to change lanes. Vision-based blind spot detection becomes popular in this field

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call