Abstract
Anomaly-based Intrusion Detection is a key research topic in network security due to its ability to face unknown attacks and new security threats. For this reason, many works on the topic have been proposed in the last decade. Nonetheless, an ultimate solution, able to provide a high detection rate with an acceptable false alarm rate, has still to be identified. In the last years big research efforts have focused on the application of Deep Learning techniques to the field, but no work has been able, so far, to propose a system achieving good detection performance, while processing raw network traffic in real time. For this reason in the paper we propose an Intrusion Detection System that, leveraging on probabilistic data structures and Deep Learning techniques, is able to process in real time the traffic collected in a backbone network, offering excellent detection performance and low false alarm rate. Indeed, the extensive experimental tests, run to validate our system and compare different Deep Learning techniques, confirm that, with a proper parameter setting, we can achieve about 92% of detection rate, with an accuracy of 0.899. Finally, with minimal changes, the proposed system can provide some information about the kind of anomaly, although in the multi-class scenario the detection rate is slightly lower (around 86%).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.