Abstract

Social networks have generated immense amounts of data that have been successfully utilized for research and business purposes. The approachability and immediacy of social media have also allowed ill-intentioned users to perform several harmful activities that include spamming, promoting, and phishing. These activities generate massive amounts of low-quality content that often exhibits duplicate, automated, inappropriate, or irrelevant content that subsequently affects users’ satisfaction and imposes a significant challenge for other social media-based systems. Several real-time systems were developed to tackle this problem by focusing on filtering a specific kind of low-quality content. In this paper, we present a fine-grained real-time classification approach to identify several types of low-quality tweets (i.e., phishing, promoting, and spam tweets) written in Arabic. The system automatically extracts textual features using deep learning techniques without relying on hand-crafted features that are often time-consuming to be obtained and are tailored for a single type of low-quality content. This paper also proposes a lightweight model that utilizes a subset of the textual features to identify spamming Twitter accounts in a real-time setting. The proposed methods are evaluated on a real-world dataset (40, 000 tweets and 1, 000 accounts), showing superior performance in both models with accuracy and F1-scores of 0.98. The proposed system classifies a tweet in less than five milliseconds and an account in less than a second.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.