Abstract

This paper reports on the development of a new transformation method. In contrast to most existing mode transformation methods in which the first-order state-space equation of the damped vibration system is transformed into a decoupled form with complex coefficient matrices, using the decoupled method presented in this paper, the equation of the damped system can be decomposed into a decoupled equation with real coefficient matrices. Two new free interface component mode synthesis methods are also presented. The equivalent full-mode matrix of the damped structure is used to capture the effects of the higher-order modes. Additionally, this work modifies the compatibility conditions at the junctions that are employed in most of the previous component mode synthesis methods for generally damped systems. The first component mode synthesis method is performed in complex space, whereas the second method can be applied in real space. Because the coefficient matrices of the coupled equation constructed by the second component mode synthesis method are all real-valued, the solution of the eigenproblem for this coupled equation can be performed in real space as well. Additionally, numerical examples demonstrate the accuracy and validity of these two component mode synthesis methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.