Abstract
Evolutionary algorithms (EAs) have become the standards and paradigms for solving inverse problems. However, their two inherited operations, namely, the crossover and mutation operations, are complicated and difficult, both in theory and in numerical implementations. In this regard, increasing efforts have been devoted to EAs which are based on probabilistic models (EAPMs) to overcome the shortcomings of available EAs. The population-based incremental learning (PBIL) is an EAPM; moreover, it can bridge the gap between machine learning and the EAs, hence enjoying several merits compared with other EAs. However, lukewarm efforts have been devoted to PBILs, especially the real coded PBILs, in the study of inverse problems in electromagnetics. In this regard, a novel real coded PBIL is being proposed in this paper. In the proposed real coded PBIL, a probability matrix is proposed to randomly generate a population, and the updating formulas for this probability matrix using the so far searched best solution and the best solution of the current population are introduced to strike a balance between convergence performance and solution quality. The proposed real coded PBIL algorithm is numerically experimented on several case studies and promising results are reported in this paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.