Abstract

Recent advances in digital microfluidics have led to the promise of miniaturized laboratories, with the associated advantages of high sensitivity and less human-induced errors. Front-end operations such as sample preparation play a pivotal role in biochemical laboratories, and in applications in biomedical engineering and life science. For fast and high-throughput biochemical applications, preparing samples of multiple target concentrations sequentially is inefficient and time-consuming. Therefore, it is critical to concurrently prepare samples of multiple target concentrations. In addition, since reagents used in biochemical reactions are expensive, reagent-saving has become an important consideration in sample preparation. Prior work in this area does not address the problem of reagent-saving and concurrent sample preparation for multiple target concentrations. In this paper, we propose the first reagent-saving mixing algorithm for biochemical samples of multiple target concentrations. The proposed algorithm not only minimizes the consumption of reagents, but it also reduces the number of waste droplets and the sample preparation time by preparing the target concentrations concurrently. The proposed algorithm is evaluated on both real biochemical experiments and synthetic test cases to demonstrate its effectiveness and efficiency. Compared to prior work, the proposed algorithm can achieve up to 41% reduction in the number of reagent droplets and waste droplets, and up to 50% reduction in sample preparation time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call