Abstract

We report the design and fabrication of a “signal-on” electrochemical aptamer-based (E-AB) sensor for detection of ampicillin. The signaling of the sensor is based on target binding-induced changes in the conformation and flexibility of the methylene blue-modified aptamer probe. The sensor's response is fast; signal saturation can be reached in ~ 200s. Since all the sensor components are surface-immobilized, it is regenerable and can be reused for at least three times. It has demonstrated good specificity and is capable of differentiating between ampicillin and structurally similar antibiotics such as amoxicillin. More importantly, it is selective enough to be employed directly in complex samples, including serum, saliva, and milk. Although both alternating current voltammetry (ACV) and square wave voltammetry (SWV) are suitable sensor characterization techniques, our results show that ACV is better suited for target analysis. Even under the optimal experimental conditions, the limit of detection of the sensor obtained in ACV (1µM) is significantly lower than that obtained in SWV (30µM).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call