Abstract

Phosphate is important for plant and animal growth. Therefore, it is commonly added as a fertilizer in agricultural fields. Phosphorus is typically measured using colorimetric or electrochemical sensors. Colorimetric sensors suffer from a limited measuring range and toxic waste generation while electrochemical sensors suffer from long-term drifts due to reference electrodes. Here, we propose a solid-state, reagent-free and reference electrode-free chemiresistive sensor for measuring phosphate using single-walled carbon nanotubes functionalized with crystal violet. The functionalized sensor exhibited a measuring range from 0.1 mM to 10 mM at pH 8. No significant interference was observed for common interfering anions like nitrates, sulphates, and chlorides. This study showed a proof-of-concept chemiresistive sensor, which can potentially be used to measure phosphate levels in hydroponics and aquaponics systems. The dynamic measuring range further needs to be extended for surface water samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call