Abstract

Resistive Plate Chambers (RPCs) are widely used in high energy physics for both tracking and triggering purposes. They have good time resolution and with finely segmented readout can also give a spatial resolution of better than 1 mm. RPCs can be produced cost-effectively on large scales, are of rugged build, and have excellent detection efficiency for charged particles. Our group has successfully built a Muon Scattering Tomography (MST) prototype, using 12 RPCs to obtain tracking information of muons going through a target volume of ∼ 50 cm × 50 cm × 70 cm, reconstructing both the incoming and outgoing muon tracks. We describe a readout system for fine-pitch RPCs using MAROC3 readout chips capable of scaling to a large system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.