Abstract

Conventional MRI systems rely on large magnets to generate a field that is both strong and extremely uniform. This field is usually produced by a heavy permanent magnet or a cryogenically cooled superconductor. An alternative approach, called prepolarized MRI (PMRI), employs two separate fields produced by two different magnets. A strong and inhomogeneous magnetic field is used to polarize the sample. After polarization, a weak magnetic field is used for readout. These fields can be produced by two separate resistive electromagnets that cost significantly less than a single permanent or superconducting magnet. At Stanford, the authors are constructing a PMRI prototype scanner suitable for imaging human extremities roughly 20 cm in diameter. With this system the authors hope to demonstrate comparable image quality to MRI with reduced system cost. The authors' initial work on low-frequency reception indicates that it will be possible to obtain comparable image signal-to-noise ratio to an MRI scanner operating at the same polarizing field strength. To reduce the capital cost of the system, the authors use resistive electromagnets. Here the authors discuss the full development of the readout magnet including important design considerations, shimming, and field plots. These encouraging results are an important step toward evaluating the cost effectiveness of PMRI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.