Abstract
Improved methods for studying intracellular reactive iron(II) are of significant interest for studies of iron metabolism and disease relevant changes in iron homeostasis. Here we describe a highly-selective reactivity-based probe in which Fenton-type reaction with intracellular labile iron(II) leads to unmasking of the aminonucleoside puromycin. Puromycin leaves a permanent and dose-dependent mark on treated cells that can be detected with high sensitivity and precision using the high-content, plate-based immunofluorescence assay described. Using this new probe and screening approach, we detected alteration of cellular labile iron(II) in response extracellular iron conditioning, overexpression of iron storage and/or export proteins, and post-translational regulation of iron export. Finally, we utilized this new tool to demonstrate the presence of augmented labile iron(II) pools in cancer cells as compared to non-tumorigenic cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.