Abstract
Mycobacterium tuberculosis (Mtb) is the causative agent for tuberculosis, the most extended infectious disease around the world. When Mtb enters inside the pulmonary alveolus it is rapidly phagocytosed by the alveolar macrophage. Although this controls the majority of inhaled microorganisms, in this case, Mtb survives inside the macrophage and multiplies. A posterior chemokine and cytokine cascade generated by the irruption of monocytes, neutrophils and posteriorly, by T-cells, does not necessarily stop the growth of the granuloma. Interestingly, the encapsulation process built by fibroblasts is able to surround the lesion and stop its growing. The success of this last process determines if the host enters in an asymptomatic latent state or continues into a life-threatening and infective active tuberculosis disease (TB). Understanding such dichotomic process is challenging, and computational modeling can bring new ideas. Thus, we have modeled the different stages of the infection, first in a single alveolus (a sac with a radius of 0.15 millimeters) and, second, inside a secondary lobule (a compartment of the lungs of around 3 cm3). We have employed stochastic reaction-diffusion equations to model the interactions among the cells and the diffusive transport to neighboring alveolus. The whole set of equations have successfully described the encapsulation process and determine that the size of the lesions depends on its position on the secondary lobule. We conclude that size and shape of the secondary lobule are the relevant variables to control the lesions, and, therefore, to avoid the evolution towards TB development. As lesions appear near to interlobular connective tissue they are easily controlled and their growth is drastically stopped, in this sense secondary lobules with a more flattened shape could control better the lesion.
Highlights
Tuberculosis (TB) is an infectious disease that on 2017 killed 1.6 million people [1]
For the first modeling appoach based on a single alvoulus, we study the effect of inflammatory and immune responses at the level of the alveolus, while for the second approach such responses are considered at a larger scale, the secondary lobule
(1) Proliferative scenario: bacilli population is eliminated by a flux of macrophages that are activated by T cells
Summary
Tuberculosis (TB) is an infectious disease that on 2017 killed 1.6 million people [1]. The same year, nearly 10 million people developed the disease. Reaction-diffusion model to understand granulomas formation in secondary lobule during tuberculosis infection. Innovacion y Universidades and FEDER, with the project PGC2018-095456-B-I00
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.