Abstract

This paper is concerned with a reaction–diffusion–advection chemostat model with two species growing and competing for a single-limited resource. By taking the growth rates of the two species as variable parameters, we study the effect of growth rates on the dynamics of this system. It is found that there exist several critical curves, which may classify the dynamics of this system into three scenarios: (1) extinction of both species; (2) competitive exclusion; (3) coexistence. Moreover, we take numerical approaches to further understand the potential behaviors of the above critical curves and observe that the bistable phenomenon can occur, besides competitive exclusion and coexistence. To further study the effect of advection and diffusion on the dynamics of this system, we present the bifurcation diagrams of positive equilibrium solutions of the single species model and the two-species model with the advection rates and the diffusion rates increasing, respectively. These numerical results indicate that advection and diffusion play a key role in determining the dynamics of two species competing in a flow reactor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.