Abstract

AbstractThe maintenance of gene flow in species that have experienced population contractions and are geographically fragmented is important to the maintenance of genetic variation and evolutionary potential; thus, gene flow is also important to conservation and management of these species. For example, the Reddish Egret (Egretta rufescens) has recovered after severe population reductions during the 19th and 20th centuries, but population numbers remain below historical levels. In this study, we characterized gene flow among management units of the Reddish Egret by using ten nuclear microsatellite markers and part of the mitochondrial (mtDNA) control region from 176 nestlings captured at eight localities in Mexico (Baja California, Chiapas, Tamaulipas, and Yucatan), the USA (Texas, Louisiana, and Florida), and the Bahamas. We found evidence of population structure and that males disperse more often and across longer distances compared with females, which is congruent with previous banding and telemetry data. The maternally inherited mtDNA and biparentally inherited microsatellite data supported slightly different MU models; however, when interpreted together, a four MU model that considered population structure and geographic proximity was most optimal. Namely, MU 1 (Baja California); MU 2 (Chiapas); MU 3 (Yucatan, Tamaulipas, Texas, and Louisiana); and MU 4 (Florida and the Bahamas). Regions outside our sampled localities (e.g., the Greater Antilles and South America) require additional sampling to fully understand gene flow and movement of individuals across the species’ entire range. However, the four MUs we have defined group nesting localities into genetically similar subpopulations, which can guide future management plans.Abstract in Spanish is available with online material

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call