Abstract

<abstract> This manuscript is concerned with the stability and synchronization for fractional-order delayed gene regulatory networks (FODGRNs) via Razumikhin approach. First of all, the existence of FODGRNs are established by using homeomorphism theory, 2-norm based on the algebraic method and Cauchy Schwartz inequality. The uniqueness of this work among the existing stability results are, the global Mittag-Leffler stability of FODGRNs is explored based on the fractional-order Lyapunov Razumikhin approach. In the meanwhile, two different controllers such as linear feedback and adaptive feedback control, are designed respectively. With the assistance of fractional Razumikhin theorem and our designed controllers, we have established the global Mittag-Leffler synchronization and adaptive synchronization for addressing master-slave systems. Finally, three numerical cases are given to justify the applicability of our stability and synchronization results. </abstract>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.