Abstract

Monophosphoryl lipid A (MLA), a substructure of bacterial lipopolysaccharide (LPS), is being developed as a prophylactic for sepsis and septic shock. In the present study it was shown that MLA induced a rapid accumulation of IFN-gamma in mice that correlated with an in vivo priming of macrophages. Primed macrophages could be induced in vitro to synthesize nitric oxide, a key mediator of macrophage cytotoxicity. Due to its rapid clearance, MLA was not present in circulation at the time when IFN-gamma accumulated, suggesting that MLA could not synergize with IFN-gamma to systemically activate macrophages in vivo. MLA treatment tolerized mice against the IFN-gamma response--ie., treatment of mice with MLA on day 1 blocked LPS from inducing IFN-gamma on days 2-4. The significance of these results in relation to MLA's ability to enhance non-specific resistance and block LPS lethality in animals is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call