Abstract

This paper develops a novel model and protocol used in some specific scenarios, in which the participants of multiple groups with different permissions can finish the signature together. We apply the secret sharing scheme based on difference equation to the private key distribution phase and secret reconstruction phrase of our threshold signature scheme. In addition, our scheme can achieve the signature success because of the punishment strategy of the repeated rational secret sharing. Besides, the bit commitment and verification method used to detect players’ cheating behavior acts as a contributing factor to prevent the internal fraud. Using bit commitments, verifiable parameters, and time sequences, this paper constructs a dynamic game model, which has the features of threshold signature management with different permissions, cheat proof, and forward security.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.