Abstract

A generic design principle for the preparation of a variety of substituted phenyl-polypyridine ligands is described. These ligands are readily prepared by a regioselective [4+2] cycloaddition between electron-deficient dienes, such as 2,6-disubstituted-1,3,4-triazines, and ethynyl-arenes or ethynyl-alkanes. Exceptional reactivity is found with electron-rich dienophiles bearing ethynylgallate or ethynylphenyldibutylamino groups. Two regioisomers are formed, the meta being preferred due to favorable pi-pi interactions in the transition state, while the para isomers are formed in low yields in most cases. The use of tert-butylacetylene or N,N-dimethylamino-2-propyne, however, drives the reaction exclusively to the para isomer. Di-N,N-dibutylaminophenyl or isoquinoline ligands can also be produced in a single step by reverse Diels-Alder reactions. Cross-coupling reactions of iodo-substituted ligands or their platinum(II) complexes under Pd(0) catalysis gives branched ligands and complexes bearing paraffin chains, electron-donor or electron-acceptor groups. The use of a chloro-Pt(II) complex of an iodo-functionalized ligand allows both halogens to be replaced by ethynyl groups by using different catalysts. This methodology readily accommodates various functional groups and has been successfully extended to systems containing a variety of donor/acceptor frameworks. All ligands strongly absorb in the near-UV and luminesce in solution at rt with quantum yields ranging from 0 to 66%. Excited state lifetimes are in the nanosecond range and the solvent effects are in keeping with singlet excited states mixed with charge-transfer character. As deduced from spectroscopic and electrochemical studies, the di-n-butylamino derivatives are strong reductants in the excited state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.