Abstract
Iterated Function Systems (IFSs) provide a standard framework for generating Fractal Interpolation Functions (FIFs) that yield smooth or non-smooth approximants. Nevertheless, the most widely studied FIFs so far in the literature that are obtained through polynomial IFSs are, in general, incapable of reproducing important shape properties inherent in a given data set. Abandoning the polynomiality of the functions defining the IFS, we introduce a new class of rational IFS that generates fractal functions (self-referential functions) for solving constrained interpolation problems. Suitable values of the rational IFS parameters are identified so that: (i) the corresponding FIF inherits positivity and/or monotonicity properties present in the data set, and (ii) the attractor of the IFS lies within an axis-aligned rectangle. The proposed IFS schemes for the shape preserving interpolation generalize some of the classical non-recursive interpolation methods, and expand the interpolation/approximation, including approximants for which functions themselves or the first derivatives can even be non-differentiable in a dense set of points of the domain. For appropriate values of the IFS parameters, the resulting rational quadratic FIF converges uniformly to the original function $$\varPhi \in \mathcal {C}^3[x_1, x_n]$$ with $$h^3$$ order of convergence, where $$h$$ denotes the norm of the partition. We also provide a number of examples intended to demonstrate the proposed schemes and to suggest how these schemes outperform their classical counterparts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.