Abstract
We point out that resonance saturation in QCD can be understood in the large-Nc limit from the mathematical theory of Pade Approximants to meromorphic functions. These approximants are rational functions which encompass any saturation with a finite number of resonances as a particular example, explaining several results which have appeared in the literature. We review the main properties of Pade Approximants with the help of a toy model for the two-point correlator, paying particular attention to the relationship among the Chiral Expansion, the Operator Product Expansion and the resonance spectrum. In passing, we also comment on an old proposal made by Migdal in 1977 which has recently attracted much attention in the context of AdS/QCD models. Finally, we apply the simplest Pade Approximant to the correlator in the real case of QCD. The general conclusion is that a rational approximant may reliably describe a Green's function in the Euclidean, but the same is not true in the Minkowski regime due to the appearance of unphysical poles and/or residues.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.