Abstract

Reversible imaging probes that allow for the dynamic visualization of the redox cycle between hydroxyl radical (⋅OH) and hydrogen sulfide (H2 S) are vital to probe the redox imbalance-involved pathological process in vivo. Herein, we report a reversible ratiometric photoacoustic (PA) imaging nanoprobe (1-PAIN) for the real-time imaging of ⋅OH/H2 S redox cycle in vivo. 1-PAIN displays a low PA ratio between 690 and 825 nm (PA690 /PA825 ), which significantly increases by ≈5-fold upon oxidation by ⋅OH, and is switched back to the initially low PA690 /PA825 value upon reduction by H2 S. 1-PAIN could dynamically report on the hepatic ⋅OH production in mice during the lipopolysaccharide (LPS)-induced liver inflammation process, and visualize hepatic H2 S generation during the N-acetyl cysteine (NAC)-induced anti-inflammation process. 1-PAIN can act as a useful tool to probe the redox state in living biology, beneficial for the study of redox imbalance-related diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.