Abstract

By simultaneously regulating the photoluminescence of alloy Au/Ag nanoclusters (NCs) and thiamine (VB1) through MnO2 nanosheets (MnO2 NS), a novel ratiometric fluorescent probe (RF-probe) was established for sensitively and selectively monitoring proanthocyanidins (PAs). The introduction of Ag (I) ions could enhance significantly the quantum yields (QYs, 11.1%) of AuNCs based on the synthetic method of UVI (UV irradiation) combined with MWH (microwave heating). MnO2 NS could quench the fluorescence (FL) of Au/AgNCs mainly coming from Förster resonance energy transfer (FRET), while it could act as a nanozyme catalyst for directly catalyzing the oxidation of VB1 to produce highly fluorescent oxVB1. In the presence of PAs, MnO2 was reduced to Mn2+, which caused that its quenching capacity and oxidase-like activity were vanished, thus the FL of oxVB1 and Au/AgNCs was reduced and recovered. The concentration of PAs could be monitored by the RF-probe with a linear range of 0.27–22.4 μmol L−1 and corresponding limit of detection (LOD) and limit of quantification (LOQ) were calculated to be 75.9 and 250.5 nmol L−1. Furthermore, the RF-probe was successfully used for the determination of PAs in mineral water, PAs additive and PAs capsule with satisfactory results compared to the standard HPLC method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.