Abstract

Most of the copper (II) fluorescent probes are based on the measurement of fluorescence at a single wavelength, which may be influenced by variations in the sample environment. To the end, the ratiometric fluorescent measurement, which involves the simultaneous measurement of two fluorescence signals at different wavelengths followed by calculation of their intensity ratio, can effectively eliminate the adverse effects on fluorescence signals and give greater precision to the data analysis relative to single-channel detection. In this work, we prepared novel luminescent gold nanoclusters (AuNCs) utilizing vitamin B2 (riboflavin) as stabilizer by a simple, rapid and one-pot green (low-toxicity materials use) procedure. The as-prepared riboflavin-AuNCs (Ri-AuNCs) solution can be luminescent exhibiting two fluorescence emission peaks at 530 nm and around 840 nm with excitation at 375 nm, however, in the presence of Cu(2+), the fluorescence of the Ri-AuNCs was found to be quenched at around 840 nm and enhanced at 530 nm by Cu(2+). The resultant ratiometric fluorescent response can provide a novel sensory probe for the determination of Cu(2+). The present probe had excellent selectivity in the presence of several cations. The probe revealed a detection limit of 0.9 μM of Cu(2+). Moreover, our proposed probe can reversibly switch between the "on" and "off" states through the addition of Cu(2+) and EDTA, which is reusable in practical application. Results and method reported here provide a unique strategy for performance of ratiometric assays demonstrated with a AuNCs-based fluorescent probe, which expands the application of AuNCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.