Abstract

Since 5-hydroxymethylfurfural (HMF) becomes a neo-forming contaminant with latent harm to human health, development of new method for highly sensitive detection of HMF is extremely desirable. Herein, a novel ratiometric fluorescence sensor based on strand displacement reaction and magnetic separation was designed for sensitive and selective detection of HMF with the help of MnO2 nanosheets. The aldehyde-functionalized DNA (S0–CHO) and HMF competed for binding to amino-functionalized magnetic beads (NH2-MBs). Then, S0–CHO was collected from supernatant by magnetic separation. In the presence of HMF, the obtained S0–CHO induced the formation of T-shaped DNA by strand displacement reaction (SDR), lighting the fluorescence of FAM. In the absence of HMF, no S0–CHO was present to ignite T-shaped DNA. In this situation, fluorescence of Cy5 was turned on. Thus, a ratiometric fluorescence sensor for high-sensitive detection of HMF was developed. The sensor has a wide linear range from 5 nM to 5 μM. It also exhibited high selectivity against other potential interfering substances. It has been successfully applied to analyze HMF in food samples. The method has potential to be expanded to detect other molecules containing aldehyde groups and further be applied in food safety, environment and other fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.