Abstract
Real-time encoding and error-resilient wireless transmission of multimedia content require high processing and transmission power. This paper investigates the rate-distortion performance of video transmission over lossy wireless links for low-complexity multimedia sensing devices with a limited budget of available energy per video frame. An analytical/empirical model is developed to determine the received video quality when the overall energy allowed for both encoding and transmitting each frame of a video is fixed and the received data is affected by channel errors. The model is used to compare the received video quality, computation time, and energy consumption per frame of different wireless streaming systems. Furthermore, it is used to determine the optimal allocation of encoded video rate and channel encoding rate for a given available energy budget. The proposed model is then applied to compare the energy-constrained wireless streaming performance of three encoders suitable for a wireless multimedia sensor network environment; H.264, motion JPEG (MJPEG) and our recently developed compressed sensing video encoder (CSV). Extensive results show that CSV, thanks to its low complexity, and to a video representation that is inherently resilient to channel errors, is able to deliver video at good quality (an SSIM value of 0.8) through lossy wireless networks with lower energy consumption per frame than competing encoders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.