Abstract

AbstractWe present a measurement of the rate of high-z Type Ia supernovae (SNe Ia) using multi-epoch observations of Subaru/XMM-Newton Deep Field (SXDF) with Suprime-Cam on the Subaru Telescope. Although SNe Ia are regarded as a standard candle, progenitor systems of SNe Ia have not been resolved yet. One of the key parameters to show the progenitor systems by observations is the delay time distribution between the binary system formation and subsequent SN explosion. Recently, a wide range of delay time is studied by SN Ia rates compared with an assumed cosmic star formation history. If SNe Ia with short delay time are dominant, the cosmic SN Ia rate evolution should closely trace that of the cosmic star formation. In order to detect a lot of high-z SNe Ia and measure SN Ia rates, we repeatedly carried out wide and deep imaging observations in the í-band with Suprime-Cam in 2002 (FoV~1 deg2, mi < 25.5 mag). We obtained detailed light curves of the variable objects, and 50 objects are classified as SNe Ia using the light curve fitting method at the redshift range of 0.2 < z < 1.3. In order to check the completeness and contamination of the light curve classification method, we performed Monte Carlo simulations and generated ~100,000 light curves of SNe Ia and II from templates. The control time and detection efficiency of the SN survey are also calculated using the artificial light curves. We derived an increasing trend of rates at around z ~ 1.2. Our results are almost consistent with other SN Ia rate results from low-z to high-z. Our results are the first results of high-z SN Ia rates with large statistics using light curves obtained by ground based telescopes, and give us visions of the SN rate studies for the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.