Abstract

In [P. Gerhardy, A quantitative version of Kirk's fixed point theorem for asymptotic contractions, J. Math. Anal. Appl. 316 (2006) 339–345], P. Gerhardy gives a quantitative version of Kirk's fixed point theorem for asymptotic contractions. This involves modifying the definition of an asymptotic contraction, subsuming the old definition under the new one, and giving a bound, expressed in the relevant moduli and a bound on the Picard iteration sequence, on how far one must go in the iteration sequence to at least once get close to the fixed point. However, since the convergence to the fixed point needs not be monotone, this theorem does not provide a full rate of convergence. We here give an explicit rate of convergence for the iteration sequence, expressed in the relevant moduli and a bound on the sequence. We furthermore give a characterization of asymptotic contractions on bounded, complete metric spaces, showing that they are exactly the mappings for which every Picard iteration sequence converges to the same point with a rate of convergence which is uniform in the starting point.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.