Abstract

We describe a simple and fast rate-equation model for surface growth during ion beam assisted metal-on-metal deposition. In terms of the rate coefficients the model describes how island detachment and breakup, adatom diffusion and interlayer transitions of adatoms affect the growth. Results from our model can be directly compared to experimental data, also for coverages of several layers. We identify parameter values corresponding to different modes of growth and locate the phase boundary between them as a function of temperature. We also show that in ideal layer-by-layer growth island size distributions retain the regular scaling form. Our model shows that in order to obtain thin films of good quality, both efficient detachment of adatoms and sufficiently fast interlayer transitions are needed. The results validate the approximations made in an earlier, more coarse-grained model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.