Abstract

A new one-dimensional theory for estimating the dynamic yield strength of materials, based on post-test measurements of Taylor impact specimens, has been developed by the authors. This theory offers the advantage of mathematical simplicity, while requiring only measurements of final specimen length, final undeformed length, and impact velocity as experimental data inputs. It is observed that the theory can accommodate a variety of material constitutive relations while preserving its basic simplicity. In particular, the dynamic material strength on impact, Y, can be directly correlated with impact velocity V through the relation Y = − Y0 − BV2. Here Y0 is the static yield strength and B is a material constant. This relation provides a rate-dependent constitutive law that is potentially useful in situations such as rod penetration, for example.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.