Abstract

The sensitivity and frequency selectivity of hearing result from tuned amplification by an active process in the mechanoreceptive hair cells. The nature of the active process in the mammalian cochlea is intensely debated, for outer hair cells exhibit two forms of mechanical activity, active hair-bundle motility and membrane-based electromotility. Here we show theoretically that active hair-bundle motility and electromotility can together implement an efficient mechanism for amplification that functions like a ratchet: sound-evoked forces acting on the basilar membrane are transmitted to the hair bundles while electromotility decouples the active hair-bundle forces from the basilar membrane. Through a combination of analytical and computational techniques we demonstrate that the ratchet mechanism can naturally account for a variety of unexplained experimental observations from low-frequency hearing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.