Abstract
Context: Smoke inhalation injury is the leading cause of acute respiratory failure in critical burn victims. Advances in the treatment of smoke inhalation injury have been limited in the past years. To further explore the pathogenesis, stable and practical animal models are necessary.Objective: To develop a rat model of smoke inhalation injury.Materials and methods: The smoke composition including the particulate matters, irritant gases, chemical carcinogens was measured. The blood gas values, pro-inflammatory and protein concentration in bronchoalveolar lavage fluid and lung wet to dry weight ratio were assayed. Pathological evaluations of pulmonary were performed at 24 h, 96 h, 7 days and 28 days post-injury. Masson–Goldner trichrome staining was performed on day 7 and 28 post-injury, along with the measurement of hydroxyproline and collagen I and III.Results: In our present animal model, smoke inhalation caused a significant hypoxemia and CO poisoning. A surge of pro-inflammatory response and microvascular hyperpermeability with neutrophils accumulations were also found in our animal model. At 24 h post-smoke inhalation, the hematoxylin and eosin results exhibited that there were inflammatory exudates and diffuse hemorrhage in the lung tissue with significant edema. With the time going, the lung injuries appeared at alveolar collapse and alveolar septum thickening, which indicated that smoke inhalation further induced damage to lung parenchyma. Specially, the markedly collagen deposition appeared at 28 days post-injury indicated that pulmonary fibrosis happened.Discussion and conclusion: In conclusion, this rat smoke inhalation injury model induced by our novel self-made smoke generator could be used for acute and chronic lung injury experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.