Abstract
AimA reproducible animal model is required to study the pathophysiology of wound infections and for development of effective therapeutic interventions. The objective of this study was to produce an infected skin wound model utilizing the cecal microbiota in non-immunocompromised rats. Materials and methodsAn excision wound was created on the dorsal surface of rats and inoculated with different concentration of cecal slurry (CS). Wound progression was investigated macroscopically by wound scoring and imaging. The rats were sacrificed on day 6 and microbial load, myeloperoxidase activity, histopathology, and scanning electron microscopy (SEM) were performed in wound tissue. ResultsInoculation of CS into excision wounds caused significantly (p < 0.05) delayed wound healing in comparison to non-infected wounds as revealed by slow wound closure (9.1 to 12.83%). A significant (p < 0.05) difference in wound score was observed between the infected and non-infected wounds. A significantly (p < 0.05) high microbial load (~10 9 CFU/gm) was observed in infected wound which was supported by the presence of intensive bacterial colonization with sparse development of amorphous material on wound tissue during SEM analysis. A maximum increase of 1.76-fold in myeloperoxidase activity was observed in the infected wounds in comparison to non-infected wounds. Histopathology revealed increased amount of cellular infiltration, hematoma formation, and presence of bacterial aggregates in deep tissues. ConclusionThe study reports a reproducible and relevant clinical model of wound infection where cecal microbiota was used as a source of infection. This model can provide a suitable platform for evaluation of new therapeutic interventions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.