Abstract

AbstractPiedmont glaciers (lobes), typically found in high latitudes and large mountainous regions, extend from ice sheets and ice caps to lower altitudes. However, they can also occur, although less commonly, on mid‐latitude mountains. When these fan‐like glaciers retreat, they leave behind hummocky moraines scattered in a chaotic pattern. In this study, we have mapped one of these mid‐latitude sites and established a Terrestrial cosmogenic nuclide (TCN) glacial chronology on Mount Davraz, namely Davraz hummocky moraine field (37°46′00″N, 30°43′15″E). Our findings indicate that the glaciers in this area started receding from the early local Last Glacial Maximum (LGM) period (21.8 ± 2.4 ka) to the early Late‐glacial period (17.7 ± 2.2 ka), and eventually disappearing. The deglaciation of the Mt. Davraz palaeoglacier matches nearby mountains, supported by southerly winds as significant for regional glaciation. Our discoveries reveal a robust connection between southerly winds and nearby glaciation, contributing to our understanding of how climate influences glaciers. Likewise, the glacial timelines of the neighbouring mountains align with the glacial history of Mt. Davraz.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.