Abstract

Midinfrared nonlinear optical (NLO) rare earth chalcogenides have attracted extensive research interest in recent several decades. Employing charge-transfer engineering strategy in the early stage, rigid tetrahedral [GeS4] was introduced into rare-earth sulfides to synthesize KYGeS4, which had an enlarged band gap while maintaining a strong second harmonic generation (SHG) effect. Based on KYGeS4, La was equivalently substituted to successfully synthesize KLaGeS4 with a stronger SHG effect (dij = 1.2 × AgGaS2) and lower cost. Meanwhile, a larger band gap (Eg = 3.34 eV) was retained and realized phase matching (Δn = 0.098 @ 1064 nm). KLaGeS4 enabled an effective balance among band gap, SHG effect, and birefringence, making it a promising candidate for infrared NLO optical materials among various rare-earth sulfides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call