Abstract

BackgroundInstructions to fabricate mineralized structures with distinct nanoscale architectures, such as seashells and coral and vertebrate skeletons, are encoded in the genomes of a wide variety of animals. In mollusks, the mantle is responsible for the extracellular production of the shell, directing the ordered biomineralization of CaCO3 and the deposition of architectural and color patterns. The evolutionary origins of the ability to synthesize calcified structures across various metazoan taxa remain obscure, with only a small number of protein families identified from molluskan shells. The recent sequencing of a wide range of metazoan genomes coupled with the analysis of gene expression in non-model animals has allowed us to investigate the evolution and process of biomineralization in gastropod mollusks.ResultsHere we show that over 25% of the genes expressed in the mantle of the vetigastropod Haliotis asinina encode secreted proteins, indicating that hundreds of proteins are likely to be contributing to shell fabrication and patterning. Almost 85% of the secretome encodes novel proteins; remarkably, only 19% of these have identifiable homologues in the full genome of the patellogastropod Lottia scutum. The spatial expression profiles of mantle genes that belong to the secretome is restricted to discrete mantle zones, with each zone responsible for the fabrication of one of the structural layers of the shell. Patterned expression of a subset of genes along the length of the mantle is indicative of roles in shell ornamentation. For example, Has-sometsuke maps precisely to pigmentation patterns in the shell, providing the first case of a gene product to be involved in molluskan shell pigmentation. We also describe the expression of two novel genes involved in nacre (mother of pearl) deposition.ConclusionThe unexpected complexity and evolvability of this secretome and the modular design of the molluskan mantle enables diversification of shell strength and design, and as such must contribute to the variety of adaptive architectures and colors found in mollusk shells. The composition of this novel mantle-specific secretome suggests that there are significant molecular differences in the ways in which gastropods synthesize their shells.

Highlights

  • Instructions to fabricate mineralized structures with distinct nanoscale architectures, such as seashells and coral and vertebrate skeletons, are encoded in the genomes of a wide variety of animals

  • The spatial expression profiles of the genes surveyed here support the supposition that specific mantle zones influence the crystal morphology of discrete layers of the mature shell

  • It appears likely that highly dynamic gene expression patterns along the length of a given mantle zone contribute to shell patterning

Read more

Summary

Introduction

Instructions to fabricate mineralized structures with distinct nanoscale architectures, such as seashells and coral and vertebrate skeletons, are encoded in the genomes of a wide variety of animals. Vertebrates, echinoderms, mollusks, arthropods, brachiopods, bryozoans, annelids, cnidarians and sponges, amongst others, construct a spectacular diversity of endo- and exoskeletons as well as sensory and protective structures from a range of minerals [1]. The importance of this trait is highlighted by the observation that the so called 'Cambrian explosion' was accompanied by the diversification of biomineralization mechanisms [2,3,4], despite the fact that several lineages possessed this ability before the end of the Proterozoic [5]. While the structure and function of a number of shell matrix proteins have recently been characterized [7,10,11,12,13,14,15,16,17], the regulatory mechanisms that govern these shell-building processes remain largely unknown

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call