Abstract

A rapid ultrasound-assisted extraction procedure for the determination of total mercury, inorganic and methyl mercury (MM) in various environmental matrices (animal tissues, samples of plant origin and coal fly ash) has been developed. The mercury contents were estimated by cold vapour atomic absorption spectrometry (CVAAS). Inorganic mercury (IM) was determined using SnCl 2 as reducing agent whereas total mercury was determined after oxidation of methyl mercury through UV irradiation. Operational parameters such as extractant composition (HNO 3 and thiourea), sonication time and sonication amplitude found to be different for different matrices and were optimized using IAEA-350 (Fish homogenate), IM and MM loaded moss and NIST-1633b (Coal fly ash) to get quantitative extraction of total mercury. The method was further validated through the analysis of additional certified reference materials (RM): NRCC-DORM2 (Dogfish muscle), NRCC-DOLT1 (Dogfish liver) and IAEA-336 (Lichen). Quantitative recovery of total Hg was achieved using mixtures of 5% HNO 3 and 0.02% thiourea, 10% HNO 3 and 0.02% thiourea, 20% HNO 3 and 0.2% thiourea for fish tissues, plant matrices and coal fly ash samples, respectively. The results obtained were in close agreement with certified values with an overall precision in the range of 5–15%. The proposed ultrasound-assisted extraction procedure significantly reduces the time required for sample treatment for the extraction of Hg species. The extracted mercury species are very stable even after 24 h of sonication. Closed microwave digestion was also used for comparison purposes. The proposed method was applied for the determination of Hg in field samples of lichens, mosses, coal fly ash and coal samples

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.