Abstract

Uranium mononitride (UN) is a candidate fuel material for light water reactors with higher uranium (U) loading and thermal conductivity than uranium dioxide (UO2). However, the sintering of UN pellets is challenging as the UN powder particles oxidize rapidly at high temperatures unless the oxygen concentration is extremely low. Oxidation during sintering either reduces the relative density of the sintered UN pellet or disintegrates the sintered UN pellet to powder. To address this problem, the present work developed a rapid sintering method for producing highly densified UN surrogate pellets with minimal oxidation. Cerium nitride (CeN) is used as a surrogate for UN to reduce radiation hazards. With the custom-developed fast-heating system, the sintering process was completed within 150 s. The sintering atmosphere was flowing nitrogen (N2). The sintered CeN pellet density was 95% of the theoretical density (TD) or higher. The microstructure was uniform with a 10–25 µm grain size as demonstrated by scanning electron microscopy (SEM) and contained trivial levels of oxides as demonstrated by X-ray diffraction (XRD). The resultant pellets indicate that the rapid sintering method is a promising method to make UN fuel pellets with equivalent or higher density to pellets made by conventional sintering methods, while also being more efficient in time and costs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call