Abstract

Sweet basil (Ocimum basilicum L.) is among the most widely popular and economically important culinary herbs. Worldwide production of sweet basil has been threatened by a newly emerging disease, downy mildew (Peronospora belbahrii). Although tolerance and resistance have been identified in other Ocimum species, the traditional sweet basils all have been reported to be highly susceptible. There is an urgent need for evaluation of basil germplasm to identify sources of host resistance to P. belbahrii within Ocimum spp. and especially among O. basilicum species. In searching for genetic resistance, we developed a rapid approach to screen and evaluate downy mildew response at the cotyledon and true leaf growth stages under controlled environmental conditions. To confirm the reliability and reproducibility of this screening method, an experiment was conducted in which three basil species (Ocimum basilicum, sensitive; O. xcitriodorum, tolerant; and O. americanum, resistant to basil downy mildew) were evaluated for response to downy mildew inoculations at three growth stages. Disease incidence (DI) at the cotyledon growth stage was equal to or greater than true leaf growth stages for all species indicating that cotyledon response to downy mildew inoculations is a viable marker for predicting true leaf stage resistance. This approach was then used to screen 36 USDA-NPGS O. basilicum accessions at cotyledon and first true leaf growth stages to identify promising downy mildew-resistant breeding lines. Thirty accessions were susceptible at both growth stages (DI = 1.0). Four accessions exhibited little or no sporulation at either growth stage (DI less than 0.06), three of which showed other symptoms including chlorosis and necrosis. One accession, PI 652053, demonstrated no signs or symptoms but differed greatly from other accessions in regard to leaf morphology and habit. Results show that a resistant, mature plant can be identified at the cotyledon growth stage, providing a robust, low-input approach to identify promising downy mildew-resistant breeding material. Field evaluations of basils under high downy mildew pressure confirmed the applicability of this new screening approach to identify resistance to basil downy mildew.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call