Abstract

Abstract A simple, one-step method has been developed to construct a corrosion-resistant bionic superhydrophobic surfaces by solve-thermal process in an ethanol and water solution containing stearic acid. Superhydrophobic surface with biomimetic micronanostructures was prepared in this study. The Mammillaria herrerae-like microspheres, carnation-like microclusters and carnation-petal-like nanoslices of biomimetic micronanostructures on magnesium alloy surface can create a stable superhydrophobic surface, which is similar to the “lotus leaf” structure. The as-prepared superhydrophobic surface had a contact angle of 158.5° and a sliding angle of 2.0°. The as-prepared superhydrophobic surfaces were characterized by means of scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and contact angle measurement. Potentiodynamic polarization measurements demonstrated that the superhydrophobic surface greatly improved the corrosion properties of magnesium alloy in 3.5 wt% NaCl solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call