Abstract

Highly crystalline graphitic carbon nitride (g-C3 N4 ) with decreased structural imperfections benefits from the suppression of electron-hole recombination, which enhances its hydrogen generation activity. However, producing such g-C3 N4 materials by conventional heating in an electric furnace has proven challenging. Herein, we report on the synthesis of high-quality g-C3 N4 with reduced structural defects by judiciously combining the implementation of melamine-cyanuric acid (MCA) supramolecular aggregates and microwave-assisted thermolysis. The g-C3 N4 material produced after optimizing the microwave reaction time can effectively generate H2 under visible-light irradiation. The highest H2 evolution rate achieved was 40.5 μmol h-1 , which is two times higher than that of a g-C3 N4 sample prepared by thermal polycondensation of the same supramolecular aggregates in an electric furnace. The microwave-assisted thermolysis strategy is simple, rapid, and robust, thereby providing a promising route for the synthesis of high-efficiency g-C3 N4 photocatalysts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call