Abstract

A mathematical model for the rapid assessment of sloshing in faster than real time is developed using a phenomenological modelling approach with a pendulum equation. Based on observations of the consistent trajectory of the centre of mass of a sloshing fluid, the imbalance force due to the displacement of the sloshing fluid is linked to the restoring force in the pendulum equation. The damping characteristics are replicated using a first and third-order damping model and impact dynamics are included using a modified impact potential. The equations are solved using a variable-order Adams–Bashforth–Moulton scheme and adequate error tolerances of the numerical scheme are established by reversing the direction of time marching. Solutions are obtained within 0.1% of real time. The proposed methodology is considered suitable for the fast time assessment of sloshing on Liquefied Natural Gas carriers, reduction of test matrices during gas carrier design and the simulation of coupled vessel-sloshing dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.