Abstract
Environmental contextAlthough the environmental occurrence of perfluoroalkyl substances was first reported almost 20 years ago, there are continuing concerns about human exposure to these potentially toxic chemicals. Such concerns have necessitated the development of reliable methods for rapid determination of perfluoroalkyl substances in human serum. This article describes a rapid and sensitive analytical method suitable for monitoring human exposure to perfluoroalkyl substances. AbstractA method for the analysis of 13 perfluorinated alkyl substances (PFASs) in human serum was developed based on hybrid solid-phase extraction (hybrid-SPE) and ultrahigh-performance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS). Serum PFASs were extracted using hybrid-SPE-phospholipid cartridge after precipitating proteins and other endogenous biological interferences with 1 % ammonium formate in methanol. The average intra-day accuracy (measured as percent recoveries from fortified samples) and precision of the method (measured as relative standard deviation [RSD, %] between analyses) were 88.7–117 % and 1.0–13.4 %, respectively. The average inter-day precision was 2.8–6.9 %. The method was sensitive, with limits of quantification (LOQs) in the range of 0.05 to 0.09 ng mL−1 for all 13 PFASs. The applicability of this method was tested by analysing serum-certified standard reference material and proficiency test samples. In an hour, 100 samples can be processed by hybrid-SPE, and the instrumental run time is 5 min per sample. The developed method is rapid, inexpensive, accurate, precise, and extremely sensitive for the analysis of PFASs in human serum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.