Abstract

The variable cycle engines (VCE) that combine the advantages of turbofan and turbojet engines, are widely considered to be the next generation aircraft engines. However, developing VCE requires high costs. Thus, it is essential to build a mathematical model when developing an aircraft engine, which may avoid a large number of real tests and reduce the cost dramatically. Modeling is also crucial in control law development. In this article, based on a graphical simulation environment, a rapid method for modeling a double bypass variable cycle engine using object-oriented modeling technology and modular hierarchical architecture is described. Firstly, the mathematical model of each component is built based on the thermodynamic calculation. Then, a hierarchical engine model is built via the combination of each component mathematical model and the N-R solver module. Finally, the static and dynamic simulations are carried out in the model and the simulation results prove the effectiveness of the modeling method. The VCE model built through this method has the advantages of clear structure and real-time observation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.